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We calculate the leading Weyl term of the counting function for a monocrystalline quartz sphere. In contrast
to other studies of counting functions, the anisotropy of quartz is a crucial element in our investigation. Hence
we do not obtain a simple analytical form, but we carry out a numerical evaluation. To this end we employ the
Radon transform representation of the Green’s function. We compare our result to a previously measured
unique data set of several tens of thousands of resonances.
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I. INTRODUCTION

In solid state physics[1], quantum chaos[2–5], and other
applications a smooth approximation to the level density or,
equivalently, to its integral referred to as the counting func-
tion (or staircase function) is often needed. Typically such an
approximation is obtained by semiclassical methods[6]. Al-
ternatively, related techniques stemming from geometrical
quantization and index theorems[7] are occasionally em-
ployed. In the context of quantum chaos, this problem of
counting the number of states has been studied thoroughly
for finite systems, in particular, billiards. The latter are real-
ized in microwave resonators. Quantum chaos methods were
successfully applied to elastodynamical systems[8–15]. The
semiclassical limit corresponds to a ray limit in which the
wavelengths are much smaller than characteristic length
scales of the resonating device. However, anisotropy enters
as an important feature of these systems which is not present
in scalar Schrödinger quantum mechanics. The problem of
anisotropy also shows up in the calculation of the heat ca-
pacity in solid state physics which directly relates to the
counting function.

In this contribution, we study a monocrystalline quartz
sphere. We calculate the first approximation to the counting
function which is referred to as the Weyl term in semiclas-
sics. We combine analytical with numerical computations.
Furthermore, we have a unique data set at our disposal which
was measured previously with extraordinary resolution[16].
It comprises tens of thousands of resonances, enabling a
comparison with our theoretical findings.

Even though the particular shape of a sphere was chosen
the system will not be rotationally invariant due to the un-
derlying medium,a quartz, which is anisotropic. This aniso-
tropy leads to nonseparabillity of the wave equation. This
makes the problem so complex that there is no way of cal-

culating spectra other than by brute force numerical methods.
A major motivation for the present investigation is the

renewed interest in elastomechanical problems which are in-
creasingly important for microelectromechanical systems
(MEMS’s). In particular, a better understanding of spectral
properties is expected to improve the control of the reso-
nance and scattering pole structure of MEMS’s. This in turn
would allow the designing of better filters and actuators[17].
Thus deeper insight into the role of anisotropy is called for.

The paper is organized as follows. In Sec. II, we compile
general features of elastodynamics as needed in the present
context. We work out the Green’s function in Sec. III. The
data accumulation is briefly reviewed in Sec. IV; we compare
to the experimental findings in Sec. V. We summarize and
conclude in Sec. VI.

II. ELASTODYNAMICS

In Sec. II A, we sketch some properties of elastic waves
in anisotropic materials. We discuss the dispersion relation
and the slowness surfaces in Sec. II B. The Green’s function
is worked out in Sec. II C. The Einstein summation conven-
tion is assumed throughout.

A. Elastic wave equation

In linear elastodynamics in the time domain, the wave
equation reads[18,19]

cijkl
]2ul

] xj ] xk
= r

]2ui

] t2
, s1d

where the displacement fieldui describes the increment of a
fictitious point particle at its positionsx1,x2,x3d. The quanti-
ties cijkl form the elasticity tensor andr is the mass density.
For our system, we may assume homogeneity of the mate-
rial, that is, the mass density and the elasticity tensor are
constants. In an isotropic material, the elasticity tensor has
only two independent entries which yield, together with the
mass density, the longitudinal velocity for pressure waves
and the transverse velocity for shear waves. In our case of
anisotropic quartz, the velocity of an elastic wave also de-
pends on the direction in the crystal. This means that the
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elasticity tensor has six independent entries. The elasticity
tensor always fulfills the following symmetry conditions:

cijkl = cijlk = cklij . s2d

The wave equation(1) is valid in the regime where the linear
relation

si j = cijklukl s3d

holds between the stress tensorsi j and the strain tensor

ukl =
1

2
S ] uk

] xl
+

] ul

] xk
D . s4d

Equation(3) is the most general form of Hooke’s law. The
wave equation in the frequency domain which corresponds
to Eq. (1) reads

cijkl
]2ul

] xj ] xk
+ rv2ui = 0, s5d

where the angular velocity is denotedv.
We are interested in the elastic vibrations of a finite ob-

ject, the elastic resonator, which is confined by a surface.
Matching the situation in the experiment we assume free
boundary conditions, that is, there is no normal stress on the
surface. This is equivalent to the condition

0 = cijkluklnj s6d

with the strain(4) and normal vectornj. The boundary con-
dition (6) is of Neumann type and makes it possible to mode
convert at the boundary. In an isotropic material, a longitu-
dinal (transverse) wave hitting the boundary is reflected and
generates, apart from some special situations, a second wave
which is transverse(longitudinal). These waves have differ-
ent velocities and leave the point of incident under different
angles. This formally corresponds to quantum mechanics for
a free spin-one particle whose effective mass depends on the
spin degrees of freedom. The particle is confined in an en-
closure, corresponding to the resonator. Not surprisingly,
mode conversion shows a much richer phenomenology in an
anisotropic material.

B. Dispersion relation and slowness

We consider a plane wave with wave vectorkj, angular
velocity v, and polarization vectorpl,

ul
spwdsx1,x2,x3d = plexpsikjxj − ivtd. s7d

Inserting this into the wave equation(1) yields the dispersion
relations

cijklkjkkpl = rv2dil pl . s8d

(Here kj and kk are thej th and thekth component, respec-
tively, of the wave vector.) The wave numbers and the angu-
lar velocity occur in equal powers. This is exploited by con-
sidering their ratio, theslowness[20]

si = ki/v. s9d

The dispersion relations(8) then motivate the introduction of
the matrix

Sil = −
1

r
cijklsjsk + dil . s10d

Thus Eq.(8) can be cast into the formSilpl =0. For solutions
to exist, one must have

det S= 0. s11d

This defines theslowness surface. As each entry in Eq.(10)
that is quadratic, the full determinantal condition becomes a
polynomial of order 6 in the variablessi. This condition
gives rise to a surface depicted in Figs. 1–3. The elastic
constantscijkl for quartz have been used; see Sec. V. The
slowness coordinates are, except for a constant factor, coor-
dinates in the space dual to the configuration space of the
resonator. The units in the figures are in inverse velocities
corresponding to velocities of the order 5000 m/sec. The
surface consists of three sheets,S=øa=1

3 Sa, where only the
inner one is convex. One clearly sees theD3 symmetry of the
crystal, that is, after a rotation of 2p /6 around the symmetry
axis a reflection in the plane orthogonal to the axis trans-
forms the surface into itself. This surface is the remains of
the dispersion surface after the frequency has been scaled

FIG. 1. (Color online) Quasilongitudinal slowness.

FIG. 2. (Color online) Quasitransverse 1 slowness.
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out. Thus a fixed direction corresponds in general to three
points on the slowness surface. The inner sheet is associated
to an almost longitudinal polarization whereas the outer
sheets are associated with the transverse polarization. Hence
the terms quasilongitudinal and quasitransverse are used.

As already pointed out, our elastodynamical problem has
formally much in common with quantum mechanics for a
particle with spin confined to an enclosure, which could be
viewed as a billiard. Inside the billiard, the particle moves in
straight lines and it mode converts upon reflections at the
boundaries. This is the situation in configuration space. Em-
ploying slowness, we have mapped the problem of one
spherical billiard for a particle with spin onto the problem of
a particle without spin(in a dual space) simultaneously mov-
ing in three nonspherical billiards, that is, in the spaces con-
fined by the three slowness surfaces. A trajectory in configu-
ration space consists of a sequence of straight pieces with a
certain modal character. In slowness space, the particle
jumpes between the billiards which are specific for a given
modal character.

C. Group velocity and polarization

The Green’s function to be introduced later on is a matrix
due to the vector character of the elastic field. Thus it is
useful to work with a proper basis in matrix space. Such a
basis is formed by the projectorsea for a given polarization
a. We shall consider the case where wave vectors belong to
a fixed sheet of polarizationa and discuss the associated
group velocity. Below we denote polarization indices with
Greek letters whereas geometrical indices are inRomanlet-
ters.

A projectorea is a 333 matrix which we introduce, cor-
responding to Eqs.(8) and (10), by writing

ka ·c/r ·ka = v2ea, s12d

that is,cpqrs/rka,pka,s=v2ea,qr. Each projector corresponds to
one of the three possible polarizationsa. The projectorsea

satisfy the completeness relation

o
a

ea = 1333 s13d

and the relation

ea ·eb = dabea, s14d

where the dot indicates matrix multiplication. The dispersion
relation for a fixed polarization becomes

ska ·c/r ·kad:ea − v2 = 0, s15d

where the contraction of all indices is denoted by the : sign.
A natural quantity that now enters the discussion is the

group velocity for a given polarizationa,

vg,a =
] v

] ka

, s16d

describing the change of angular velocity with the wave vec-
tor for that polarization. Varying Eq.(15) with respect to the
wave vectors and the angular velocity

sdka ·c/r ·kad:ea − dvv = 0 s17d

and finally scaling out the angular velocity gives

vg,a =
] v

] ka

= sc/r ·sad:ea. s18d

Above, also the projectors could have a variation which we
have not taken into account. However, since

ska ·c/r ·kad:dea = v2ea:dea s19d

and

2ea:dea = d„trsea ·ead… = d„trsead… = ds1d = 0, s20d

this variation does not contribute.
From Eqs.(9) and(15) we see thatsa andvg,a are mutu-

ally polar reciprocal to each other, that is,

1 = ssa ·c/r ·sad:ea = sa · sc/r ·sad:ea = sa ·vg,a. s21d

This relation can be used to construct the group velocity and
holds in general for systems which are homogeneous inki
and v. This condition defines the individual sheet, and in
particular the group velocity is normal to this sheet.

However, interesting complications arise as the degen-
eracy of this matrix is not constant. Hence there exist direc-
tions for which the phase velocity of the two intersecting
sheets is the same. Note that this degeneracy occurs in slow-
ness space. Interestingly suchmode conversion pointsmay
also occur purely inx space, e.g., in Landau-Zener problems
or in nuclear/chemical reaction physics. In general, however,
there are three distinct polarizations, and from Eq.(10) these
only depend on the directionŝa=sa /sa. Furthermore, for the
opposite direction the same polarization is found. We have
depicted one of the quasitransverse polarizations in Figs. 4
and 5. The behavior of the two shear components are similar
with a twisting near the poles. The quasilongitudinal, how-
ever, is much simpler with a polarization vector which looks
like a smooth deformation of the field of normal vectors on
the sphere(a hedgehog); see Fig. 6.

FIG. 3. (Color online) Quasitransverse 2 slowness.
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III. GREEN’S FUNCTION

We discuss a result based on the Radon transform. Nu-
merically it is convenient to express the Green’s function as
a certain integral over the unit sphere. For a theoretical in-
terpretation this integral is transformed to a similar one over
the slowness surface. Using the Radon transform the result in
the frequency domain is[21,22]

G+sx,vd = G+
Rsx,vd + GSsx,vd s22d

with superscriptsR andS indicating theregular andsingular
part and subscript + forcausal. Here we have changed di-
mensions compared to Refs.[21,22] by solving for the
Green’s function for Eq. 5 wherer has been divided out. For
convenience a derivation is discussed in Appendix A. The
regular part is an integral over plane waves:

G+
Rsx,vd =

i

8p2E
nPS2

o
a

kaea

2ca
2 eikaun·xudV. s23d

Here ka , ca, and ea refer to wave number, phase velocity,
and respective polarization projector for polarization number
a for the plane wave in question. The singular part

GSsx,vd =
1

8p2E
nPS2

G−1snddsn ·xddV s24d

is purely real and corresponds to thestatic part of the
Green’s function. The matrixG is defined by

Gi j =
ciklj

r
nknl s25d

for which

Gsnd = o
a

ca
2ea. s26d

We notice that Eq.(25) follows from Eq.(15) with k =nk and
c=v /k.

The integrals above can be formulated in a more intrinsic
form. Thus instead of integrating over the unit sphereS2 the
dispersion surface can be applied. Usingslowness, Eq. (23)
becomes

G+
Rsx,vd =

i

8p2vE
nPS2

o
a

sa
3ea

2
eivusa·xudV. s27d

Since the wave number and the angular velocity occur ho-
mogeneously in the dispersion relation the corresponding
slowness surface is used. Applying polar reciprocity(21), 1
=s·vg and denotingu the angle betweensa and vg,a, the
element of areadsa on this surface is

dV =
cosu

s2 dsa =
dsa

vg,asa
3 s28d

so

G+
Rsx,vd =

i

8p2vo
a
E

sPSa

ea

2vg,a
eivusa·xudsa. s29d

This can be written in a causal form as an integral over
forward pointing wave vectors,

G+
Rsx,vd =

i

8p2vo
a
E

sPSa
+

ea

vg,a
eivsa·xdsa. s30d

The general result including the anticausal Green’s function
reads

G±
Rsx,yd = ± iv

1

s2pd2o
a
E

sPSa
±

dsa

ea

2vg,a
eivs·r , s31d

whereSa
± is the positive or negative of the surfaceSa, re-

spectively. For the causal Green’s function this is to be un-
derstood over the upper hemispheressi .0d. For the anti-
causal Green’s function, the lower hemisphere is the domain
of integration. Furthermore, the group velocity is the oppo-
site of the direction of observation, leading to a sign change
of the integrand. In conclusion, thediscontinuity of the
Green’s function

FIG. 4. (Color online) Twisting of polarization: shear 1.

FIG. 5. (Color online) Twisting of polarization: shear 2.

FIG. 6. (Color online) Polarization: pressure.
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DGsx,yd = G+sx,yd − G−sx,yd

= iv
1

s2pd2o
a
E

sPSa

dsa

ea

2vg,a
eivs·sx−yd s32d

is expressed as an integral over the whole slowness surface.
Note here the cancellation of the(real) singular part in the
discontinuity of the Green’s function.

IV. ACCUMULATION OF DATA

In the experiments[16], several shapes were studied. This
paper concerns the spectrum of a particular quartz sphere.
We shall briefly sketch the experiments; further details will
be given in Ref.[16]. The quartz sphere is supported by three
transducers; see Fig. 7. The transducers excite the sphere via
piezoelectric coupling. The data obtained in the experiment
are an arbitrary constant times the complex ratio of the out-
going to the incomingelectric signal. As the data are com-
plex the actual phase of the response is available. The setup
and the measurement techniques are extensions of previous
work [10]. The resolution of the setup, characterized by the
Q value, is very high. A typical resonance measured in ex-
periment is shown in Fig. 8. Due to the highQ valueringing
is observed because the transducer frequency changes at a

constant rate. The actual position of the single resonance is
to the left of the observed peaks as the frequency is swept
upwards. Since occasionally two or perhaps even more reso-
nances are close together, the observed signal appears as su-
perpositions of such. The resonances are fitted by using a
recognition code[23] which is based on maximum entropy
principles. The code fits for each resonance the position in
frequency, the decay width, and its(complex) amplitude. It is
capable of treating individual resonances with ringing and of
superimposing them if they are overlapping. Good perfor-
mance is observed for the real and imaginary part of the
response.

The quartz sphere was manufactured with a high preci-
sion. The spherical shape ensures the discrete symmetry of
the crystal, which is described by the symmetry groupD3.
However,D3 is broken to the symmetry groupC3 due to the
positions of the transducers in the experiment. Moreover,
despite the high precision manufacturing, the shape cannot
be perfectly spherical. Its diameter has a relative precision of
5310−5. At high frequencies this should lead to observable
splittings. Finally, gravity leads to an oblate deformation of
the sphere. These effects further break the symmetry. Hence
the vast majority, if not all, of the symmetry degeneracies are
expected to be broken.

V. WEYL CONTRIBUTION

We now discuss the counting function. We work out the
leading approximation in Sec. V A and evaluate it numeri-
cally in Sec. V B. In Sec. V B, we compare to data obtained
in the measurements mentioned in the previous Sec. IV.

A. Approximation to the counting function

The smooth or Weyl part of the level density is the easiest
to access. The fluctuations play an important role as well. In
fact, the oscillating part of the level density becomes of the
same order as the smooth part. Here, however, the focus is
on the smooth part. The level density is written formally as

dsvd = o
i

dsv − vid. s33d

This can be found from the discontinuity of the Green’s
function as

dsv2d =
1

2pi
Tr DGsv2d s34d

since we here use a Green’s function with respect to the
squared angular velocity. Now the Green’s function is ap-
proximated with the corresponding free function. This step is
discussed in Ref.[24] and below in this section and corre-
sponds to that in the interior parts of the resonator where the
propagation is roughly free. This gives

dsv2d = Vxv
1

s2pd3o
a
E

sPSa

dsa

1

2vg,a
. s35d

The volume of the resonator is denotedVx. The counting
function

FIG. 7. (Color online) Quartz sphere with supporting
transducers.

FIG. 8. (Color online) Resonance with ringing due to finite
sweep velocity and highQ value.
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Nsvd = Nsv2d =E
0

v2

dsv82ddv82 s36d

becomes

Nsvd = Vx
v3

3

1

s2pd3o
a
E

sPSa

dsa

1

vg,a
. s37d

From Eq.(21) and geometrical considerations of cones the
volume element on a given slowness sheet is

dVa =
1

3

dsa

vg,a
s38d

and therefore

Nsvd = Vxo
a

Va

v3

s2pd3 s39d

in terms of the volumes of the slowness sheets,Va. Some-
what simpler, using frequencyf,

Nsfd = Vxo
a

Vaf3. s40d

Thus we have a re-derivation of the well-known result:
namely, the number of states equals to leading order the
available phase space volume.

Although we deal with the anisotropic case, it is instruc-
tive to see that the formulas reduce to the result for the iso-
tropic case,

Nsfd =
4p

3
VxS 1

cL
3 +

2

cT
3D f3, s41d

wherecL andcT are the longitudinal and the transverse sound
velocities, respectively.

In solid state physics the procedure is different. The reso-
nators are unit cells in crystal lattices. This implies a period-
icity assumption of the crystal in contrast to our case of a
finite system. Lattice vibrations are connected to the concept
of heat and the counting function for vibrations leads to the
famous Debye law for the heat capacity. This is derived in
Ref. [1].

We will now discuss heuristically why the above deriva-
tion is nothing but the leading approximation and correponds
to the smooth part of the counting function. Since the trace
of the Green’s function is taken, it is mainly the local propa-
gation between nearby points which is probed. However,
also the possibility of propagation via reflections from the
boundary remains. Contributions here come from periodic
orbits p but are typically of lesser magnitude than the direct
zero length contribution. Ultimately such terms lead to oscil-
latory contributions to the spectral density. Thus expanding
around periodic orbits using the method of stationary phase
leads to terms of the form of amplitudesAp times phases,

Ap expsivTp + ¯ d, s42d

where the(dimensionless) classical actionkLp=vTp in terms
of the length/period of the orbit controls the phase of the
fluctuations. Averaged over a sufficently large frequency in-
terval the fluctuations dissappear and what remains is the

part from zero length orbits. The latter do not fluctuate and
represents the average contribution.

B. Numerical calculation and prediction

At room temperatureTr =22°C, the mass density isr
=2.6485 g/cm3, and the diameter of the sphere measures
87.75 mm. The elastic constants for quartz at room tempera-
ture are listed in Table I.

They are given in Voigt notation. Pairs of Cartesian indi-
ces i j with i , j P hx,y,zj are numbered as follows:xx=1,
yy=2, zz=3, yz=4, zx=5, and xy=6. Thus, for example,
cxxyz is denoted C14.

We now calculate the leading Weyl term(40). The volume
in slowness space is conveniently expressed as an integral
over the unit sphere,

Vs = o
a

Va = o
a

1

3
E

nPS2
sa

3dn. s43d

The three lengths of the slowness vectors are found from
Eqs.(10) and(11). In particular, the squares of the velocities
are found from Eqs.(25) and (26). Therefore Eq.(43) re-
duces to

Vs =
1

3
E

nPS2
tr„Gsnd−3/2

…dn, s44d

which is easily calculated from the eigenvalues ofGsnd. Fi-
nally the symmetry can be exploited: In the case of quartz it
is enough to integrate over a fundamental region 0øf
ø2p /3 and 0øuøp /2 and multiply by 6. Using the elastic
constants in Table I, we find the volume in slowness space by
numerical integration,

Vs = 1.49093 10−10ssec/md3. s45d

This volume may be used for various shapes of resonators
upon multiplication with the particular volumes in physicalx
space. Hence, combining everything, the number of states for
our sphere should grow as

Nsfd = Af3 + Osf2d s46d

with the constant

A = 5.2743 10−14sec3 s47d

as the result of our computation.
The elastic constants change with temperature. In Appen-

dix B, they are given in terms of an expansion. As the ex-
periment was performed atT=30°C, we also calculate the
volumes in slowness space with these corrected constants.
However, it turns out that the relative difference to the cal-
culation for room temperature is of the order of 10−8, that is,
within the numerical errors. Similarly, the temperature de-

TABLE I. Elastic constants for quartz at room temperature.

Units C11 C12 C13 C14 C33 C44

1011 N/m2 0.868 0.0704 0.1191 −0.1804 1.0575 0.5820
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pendence of the mass density, see Appendix B, has no influ-
ence either.

C. Comparing with experiment

The spectrum used here was measured from 410 to
960 KHz. The resonances were identified by means of the
recognition routine[23]; mentioned in Sec. IV. Roughly
52 000 resonances were found. Here the bulk term in Eq.
(46) contributes with at least 43 000 resonances. The stair-
case for the experiment is fitted with a cubic polynomial; see
Fig. 9. For the leading coefficient we find

Afit = 5.0303 10−14sec3. s48d

This is in good agreement with the theoretical result(47).
The relative error is 4.6%.

The difference between the fitted and the experimental
counting function is plotted in Fig. 10. The sizable deviation
between fit and experiment is striking. It resembles a saw-
tooth with very rapid fluctuations on top. We Fourier trans-
form this oscillating structure and obtain the period spec-
trum; see Fig. 11. From this we estimate the time

corresponding to the largest peak to approximately 2msec.
Also other peaks at4,9,13,17,20, . . .msec are observed. As
the frequency interval sampled is approximately 500 KHz
the resolution is roughly 2msec. It is tempting to interpret
the largest peak as due to the shortest bouncing-ball-type
mode, that is, a wave packet bouncing back and forth along
some diameter of the sphere. If we take the velocities to lie
between 5 and 10 km/sec the shortest period is around
17.8msec. Therefore the peak corresponding to the sawtooth
oscillations is not likely to be due to such a mode and re-
mains unexplained so far. Likewise the remaining short times
less than the estimate 17.8msec are not explained.

VI. SUMMARY AND CONCLUSION

We have discussed the experimental spectrum of a quartz
sphere from the point of view of the spectral counting func-
tion. The classical phase space volume gives indeed the lead-
ing behavior of this object. On calculating this numerically
we find it in good agreement with the experimentally fitted
term. This paves the way for further studies of elastic spec-
tra, such as boundary corrections to the counting function
[25,26] and periodic orbit theory for the fluctuations in the
level density[13–15].

Due to the boundary further resonances should be present.
Less is not expected as the boundary conditions allow for
surface waves in analogy with Neumann conditions for the
Helmholtz case. It is currently an open problem to incorpo-
rate this surface contribution in the anisotropic case. Never-
theless, such surface modes couple to the bulk and are not
exponentially damped in this elastic case. Therefore experi-
ments should access these states and thereby the surface cor-
rection to the leading volume term as well.

The fluctuating part would involve recent semiclassical
methods. Here individual closed rays, periodic orbits, control
the oscillations in the level density. In particular this has
been shown not just for quantum mechanical spectra but also
more recent in two dimensional elastodynamic resonators.
The step to three dimensions plus anisotropy has yet to be
made.
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APPENDIX A: RADON TRANSFORM AND THE GREEN’s
FUNCTION

Following Ref.[21] we first solve the Radon transformed
time problem. Next the solution is transformed back, and
finally Fourier transforming gives the frequency dependent
Green’s function.

Radon transform

The equations=n ·x describes a plane with the normal
vectorn in the space of the position vectorx. The plane cuts
the direction defined byn in the heights. The Radon trans-

form f̂ss,nd of a function fsxd is the average

Rfss,nd = f̂ss,nd =E fsxddss− n ·xddx sA1d

over the plane for a given heights. The Radon transform of
the spatial derivatives of the functionfsxd fulfills

RS ] f

] xiDss,nd = nis]sRfdss,nd. sA2d

We now apply this to the time dependent elastic problem(1).
We denote the Green’s functionGsx ,td and its Radon trans-

form Ĝss,nd. We find

fGsnd]s
2 − 1]t

2g · Ĝ = − 1dssddstd, sA3d

where the matrixG is defined in Eqs.(25) and (26). We

observe thatĜss,nd also depends on timet. The initial con-

dition is taken as causal such thatĜss,nd=0 for t,0. Nec-
essary and sufficient conditions for solving this problem are
found by projecting onto the subspaces defined by the indi-
vidual polarizations:

sca
2]s

2 − ]t
2dea · Ĝss,nd = − eadssddstd, sA4d

whereca is the phase velocity associated with polarizationa
andea is the corresponding projector. Invoking d’Alembert’s
solution

ea · Ĝss,nd = eaHstd
2ca

fHss+ catd − Hss− catdg sA5d

with H the Heaviside unit step function, we find

Ĝss,nd = o
a

eaHstd
2ca

fHss+ catd − Hss− catdg, sA6d

which is the full solution.

Inverse Radon transform

The inverse Radon transform is given by

fsxd = −
1

8p2E
nPS2

dVUd2sRfdss,nd
ds2 U

s=n·x
sA7d

following from the identity

dsxd = −
1

8p2E
nPS2

dVd 9sn ·xd. sA8d

The latter is proved using

2puxu =E
nPS2

dVun ·xu

and the identitiesuxu=2dsxd, Ds1/uxud=−4pdsxd and Duxu
=2/uxu. Hence we find the Green’s function in configuration
space,

Gsx,td = −
Hstd
16p2E

nPS2
dVo

a

ea

ca
2 ]tfdscat + n ·xd

+ dscat − n ·xdg

= −
Hstd
8p2E

nPS2
dVo

a

ea

ca
2 ]tdscat − n ·xd, sA9d

by inverting Eq.(A6).

Frequency domain

The frequency dependent Green’s functionGsx,vd is ob-
tained by Fourier transforming Eq.(A9) with respect to time:

Gsx,vd = −
1

8p2E
nPS2

dVo
a

ea

ca
2E

−`

`

dteivtHstd]t

3dscat − n ·xd. sA10d

The inner integral is found by partial integration: the time
derivative will act either on the exponential or the step func-
tion leading to the regular respective singular contribution

G+
Rsx,vd =

i

8p2E
n·x.0

o
a

kaea

ca
2 eikan·xdV

=
i

8p2E
nPS2

o
a

kaea

2ca
2 eikaun·xudV sA11d

and

GSsx,vd =
1

8p2E
nPS2

G−1snddsn ·xddV.

The anticausal Green’s function is found similarly by revers-
ing the time in, say, Eq.(A6). In particular, the same singular
part is otained whereas the regular part is the complex con-
jugate of the causal regular part.

APPENDIX B: TEMPERATURE DEPENDENCE

The resonator is kept at fixed temperature

T = 30 °C sB1d

with a precision on the order of a mK. This is slightly higher
than the room temperatureTr =22°C, at which the quartz
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sphere was manufactured. This causes a change in the elastic
constants described below in terms of a power series expan-
sion around room temperature,

cijklsTd = cijkl ,0 + cijkl ,1sT − Trd + cijkl ,2sT − Trd2

+ cijkl ,3sT − Trd3 + ¯ . sB2d

We took the coefficients of this expansion from Ref.[27];
they are listed in Table II.

Furthermore, a change in mass density takes place. In
Table III, we list the coefficients of an expansion around
room temperature.

Finally, there is also a shape deformation, expressed in
terms of the tensor of thermal expansion according toui8
=ai juj.

The effect of temperature change is therefore mainly to
change the shape and volume of thek part of the available
phase space volume, namely the slowness surface. Thus the
first table is most important for our purposes. We have cal-
culated the new volume in slowness space at the correspond-
ing experimental temperature to cubic order in the tempera-
ture change. The other, relative changes turn out to be
negligible, namely of the order 10−8.
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TABLE II. Coefficients of temperature expansion for elastic
constants of quartz.

Order Units C11 C12 C13 C14 C33 C44

0 1011 N/m2 0.868 0.0704 0.1191 −0.1804 1.0575 0.5820

1 10−6/K −48.5 −3000 −550 101 −160 −177

2 10−9/K2 −107 −3050 −1150 −48 −275 −216

3 10−12/K3 −70 −1260 −750 −590 −250 −216

TABLE III. Coefficients for the temperature expansion of the
mass density of quartz.

Order Units r

0 103kg/m3 2.6485

1 10−6/K −34.80

2 10−9/K2 −30.04

3 10−12/K3 49.08
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