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Counting function for a sphere of anisotropic quartz
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We calculate the leading Weyl term of the counting function for a monocrystalline quartz sphere. In contrast
to other studies of counting functions, the anisotropy of quartz is a crucial element in our investigation. Hence
we do not obtain a simple analytical form, but we carry out a numerical evaluation. To this end we employ the
Radon transform representation of the Green’s function. We compare our result to a previously measured
unique data set of several tens of thousands of resonances.
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[. INTRODUCTION culating spectra other than by brute force numerical methods.
) . A major motivation for the present investigation is the
In solid state physicgl], quantum chaof2-5], and other  enewed interest in elastomechanical problems which are in-
applications a smooth approximation to the level density Or¢raasingly important for microelectromechanical systems
equivalently, to its integral referred to as the counting func-\EMmS's). In particular, a better understanding of spectral
tion (or staircase functionis often needed. Typically such an rgperties is expected to improve the control of the reso-
approximation is obtained by semiclassical methi#sAl-  ance and scattering pole structure of MEMS's. This in turn
ternatively, related techniques stemming from geometricalyoy|q allow the designing of better filters and actuafdrd.
quantization and index theorenig] are occasionally em- Thys deeper insight into the role of anisotropy is called for.
ployed. In the context of quantum chaos, this problem of The paper is organized as follows. In Sec. I, we compile
counting the number of states has been studied thoroughlyeneral features of elastodynamics as needed in the present
for finite systems, in particular, billiards. The latter are real-context. We work out the Green’s function in Sec. lll. The
ized in microwave resonators. Quantum chaos methods weggyia accumulation is briefly reviewed in Sec. IV; we compare

successfully applied to elastodynamical syst¢&sly. The (5 the experimental findings in Sec. V. We summarize and
semiclassical limit corresponds to a ray limit in which the ;gnclude in Sec. VI.

wavelengths are much smaller than characteristic length
scales of the resonating device. However, anisotropy enters
as an important feature of these systems which is not present
in scalar Schrédinger quantum mechanics. The problem of |n Sec. Il A, we sketch some properties of elastic waves
anisotropy also shows up in the calculation of the heat cain anisotropic materials. We discuss the dispersion relation
pacity in solid state physics which directly relates to theand the slowness surfaces in Sec. Il B. The Green’s function
counting function. is worked out in Sec. Il C. The Einstein summation conven-
In this contribution, we study a monocrystalline quartztion is assumed throughout.

sphere. We calculate the first approximation to the counting
function which is referred to as the Weyl term in semiclas-
sics. We combine analytical with numerical computations.
Furthermore, we have a unique data set at our disposal which In linear elastodynamics in the time domain, the wave
was measured previously with extraordinary resolufibj. ~ eduation read§l8,19

Il. ELASTODYNAMICS

A. Elastic wave equation

It comprises tens of thousands of resonances, enabling a 2u 2u
comparison with our theoretical findings. G| ———— = p—at (1)
ikl P25
(9X]' Xy Jt

Even though the particular shape of a sphere was chosen
the system will not be rotationally invariant due to the un-\yhere the displacement field describes the increment of a
derlying mediuma quartz, which is anisotropic. This aniso- ficiitious point particle at its positiofky, X,,Xs). The quanti-
tropy leads to nonseparabillity of the wave equation. Thig;eq G form the elasticity tensor anglis the mass density.
makes the problem so complex that there is no way of calgg, our system, we may assume homogeneity of the mate-

rial, that is, the mass density and the elasticity tensor are
constants. In an isotropic material, the elasticity tensor has

*Electronic address: Niels.Sondergaard@matfys.Ith.se only two independent entries which yield, together with the
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elasticity tensor has six independent entries. The elasticity

. . . sy (sec/km)
tensor always fulfills the following symmetry conditions: Y

Ciji = Cijik = Cuiij - (2

The wave equatiofl) is valid in the regime where the linear
relation 0.1

Tij = Cijig Uy (3
holds between the stress tensgrand the strain tensor
1(90 Uy d 8] ) -0.1
Ug=—(—+—|. 4
K 2 ( d X J Xk ( )

Equation(3) is the most general form of Hooke’s law. The
wave equation in the frequency domain which corresponds
to Eq. (1) reads

Sy (sec/km)

Pu FIG. 1. (Color online Quasilongitudinal slowness.
Cijki +pw?l; =0, (5)
IX; 3%
1
where the angular velocity is denoted Si=- ;Cijmsjs«‘f S (10

We are interested in the elastic vibrations of a finite ob-
ject, the elastic resonator, which is confined by a surfaceThus Eq.(8) can be cast into the fori§;p,=0. For solutions
Matching the situation in the experiment we assume fregg exist, one must have
boundary conditions, that is, there is no normal stress on the
surface. This is equivalent to the condition detS=0. (11

0 = Cj Ui, (6)  This defines theslowness surfacéis each entry in Eq(10)
that is quadratic, the full determinantal condition becomes a

with the strain(4) and normal vecton;. The boundary con- polynomial of order 6 in the variables. This condition
dition (6) is of Neumann type and makes it possible to modeyives rise to a surface depicted in Figs. 1-3. The elastic
convert at the boundary. In an isotropic material, a |0”9itU'constantscijk| for quartz have been used; see Sec. V. The
dinal (transverspwave hitting the boundary is reflected and sjowness coordinates are, except for a constant factor, coor-
generates, apart from some special situations, a second waygfates in the space dual to the configuration space of the
which is transverselongitudina). These waves have differ- resonator. The units in the figures are in inverse velocities
ent velocities and leave the point of incident under differentcorresponding to velocities of the order 5000 m/sec. The
angles. This formally corresponds to quantum mechanics fo§yrface consists of three sheeiss U3_;3,, where only the
a free spin-one particle whose effective mass depends on thgner one is convex. One clearly sees Bhesymmetry of the
spin degrees of freedom. The particle is confined in an encrystal, that is, after a rotation of6 around the symmetry
closure, corresponding to the resonator. Not surprisinglyaxis a reflection in the plane orthogonal to the axis trans-
mode conversion shows a much richer phenomenology in afyrms the surface into itself. This surface is the remains of

anisotropic material. the dispersion surface after the frequency has been scaled
B. Dispersion relation and slowness 0.2
We consider a plane wave with wave vectgr angular s, (sec/km) -
velocity w, and polarization vectop, 0
UPY (1, X0, Xg) = piexpikjx; — iwt). (7) 0.
Inserting this into the wave equati¢h) yields the dispersion 0.2
relations
) 0.1
Cijk KK = po“ &Py (8) s (secm)
(Herek; andk, are thejth and thekth component, respec-
tively, of the wave vectoy.The wave numbers and the angu- -0.1
lar velocity occur in equal powers. This is exploited by con- —02
sidering their ratio, theslownesg20]
-0.2
s =k/w. 9) -0.1 p
The dispersion relation®) then motivate the introduction of s (sec/km) 0.1

the matrix 0.2

FIG. 2. (Color onling Quasitransverse 1 slowness.
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0.2
s, (sec/km) > €, = 13x3 (13
0 a
-0. and the relation
0.2 ea ' eB = 5aﬁeou (14)
0.1 where the dot indicates matrix multiplication. The dispersion
s; (sec/km) ¢ g relation for a fixed polarization becomes
0.1 g (k,-clp-k,)e,~ ?=0, (15)
~0:2 where the contraction of all indices is denoted by the : sign.
A natural quantity that now enters the discussion is the
=02 group velocity for a given polarizatioa,
0
s, (sec/km) Jw
0.2 -
Vga= T 16
0= gy (16)

FIG. 3. (Color online Quasitransverse 2 slowness.
describing the change of angular velocity with the wave vec-

out. Thus a fixed direction corresponds in general to thredO! for that polarization. Varying Eq15) with respect to the

points on the slowness surface. The inner sheet is associatdfVe vectors and the angular velocity
to an almost longitudinal polarization whereas the outer (dk,,-c/p-k,):e, - dow=0 (17)
sheets are associated with the transverse polarization. Hence
the terms quasilongitudinal and quasitransverse are used. and finally scaling out the angular velocity gives

As already pointed out, our elastodynamical problem has
formally much in common with quantum mechanics for a V., = &—w:(c/p.s )e,. (18)
particle with spin confined to an enclosure, which could be 9ok, o
VieWEd asa biIIiard_. Inside the billiard, the particle_ MOVes ir'Above, also the projectors could have a variation which we
straight lines and it mode converts upon reflections at thg e not taken into account. However, since
boundaries. This is the situation in configuration space. Em-
ploying slowness, we have mapped the problem of one (k,-clp-k,):de, = w’e,de, (19
spherical billiard for a particle with spin onto the problem of
a particle without spirtin a dual spacesimultaneously moy- @n
ing in three nonspherical billiards, that is, in the spaces con- do = . - - -
fined by the three slowness surfaces. A trajectory in configu- 28,8, = d(lr(e, - €,)) = d(tr(e,) =d(1) =0, (20
ration space consists of a sequence of straight pieces withthis variation does not contribute.
certain modal character. In slowness space, the particle From Egs.(9) and(15) we see thas, andv, , are mutu-
jumpes between the billiards which are specific for a giverally polar reciprocalto each other, that is,
modal character.

1=(s,-Clp-s,):€,=S, - (C/p-S,):€,=S, Vg, (21)

This relation can be used to construct the group velocity and
holds in general for systems which are homogeneous in

The Green’s function to be introduced later on is a matrixand w. This condition defines the individual sheet, and in
due to the vector character of the elastic field. Thus it isparticular the group velocity is normal to this sheet.
useful to work with a proper basis in matrix space. Such a However, interesting complications arise as the degen-
basis is formed by the projectoes for a given polarization —eracy of this matrix is not constant. Hence there exist direc-
«. We shall consider the case where wave vectors belong téons for which the phase velocity of the two intersecting
a fixed sheet of polarizatioa and discuss the associated sheets is the same. Note that this degeneracy occurs in slow-
group velocity. Below we denote polarization indices with ness space. Interestingly suofode conversion point:iay
Greek letters whereas geometrical indices arRamanlet-  also occur purely ix space, e.g., in Landau-Zener problems

C. Group velocity and polarization

ters. or in nuclear/chemical reaction physics. In general, however,
A projectore, is a 3x 3 matrix which we introduce, cor- there are three distinct polarizations, and from @@) these
responding to Eq¥8) and(10), by writing only depend on the directiog),=s,/s,. Furthermore, for the

opposite direction the same polarization is found. We have
depicted one of the quasitransverse polarizations in Figs. 4
and 5. The behavior of the two shear components are similar
with a twisting near the poles. The quasilongitudinal, how-
that is,Cpqrs/ PKq, pKa,s= wzeavqr. Each projector corresponds to ever, is much simpler with a polarization vector which looks
one of the three possible polarizatioas The projectore,  like a smooth deformation of the field of normal vectors on
satisfy the completeness relation the spherda hedgehop see Fig. 6.

K,-Clp-k,=w’,, (12
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FIG. 4. (Color onling Twisting of polarization: shear 1. FIG. 6. (Color onling Polarization: pressure.

I1l. GREEN'S FUNCTION 5
I'(n) =2, c2e”. (26)
We discuss a result based on the Radon transform. Nu- @

merically it is convenient to express the Green’s function a§N
a certain integral over the unit sphere. For a theoretical in- N
terpretation this integral is transformed to a similar one ovef
the slowness surface. Using the Radon transform the result i
the frequency domain 21,22

notice that Eq(25) follows from Eq.(15) with k=nk and
=wl/k.
The integrals above can be formulated in a more intrinsic
orm. Thus instead of integrating over the unit sph&té¢he
dispersion surface can be applied. UssigwnessEq. (23)
G.(x,0) = GE(X, ) + G, 0) (22)  becomes

with superscript®k andS indicating theregular andsingular [ sze“ ols. -

part and subscript + focausal Here we have changed di- Gi(x,w) = Q‘”J 822 76‘ Xy, (27
mensions compared to Ref§21,2 by solving for the nes @

Green’s function for Eq. 5 wherehas been divided out. For Since the wave number and the angular velocity occur ho-
convenience a derivation is discussed in Appendix A. Themogeneously in the dispersion relation the corresponding

regular part is an integral over plane waves: slowness surface is used. Applying polar recipro¢g§), 1
) . =s-v4 and denotingd the angle betwees, andvg,, the
GR(x.w) = o D ka_eeika\n-x\dﬂ_ (23  element of arealo, on this surface is
o 8772 nes? « Zci
Q= cosf¢ do,
Herek,, c,, ande” refer to wave number, phase velocity, d2 = 2 do, = v S (28)
and respective polarization projector for polarization number gata
«a for the plane wave in question. The singular part SO
1 i e“
Gxw)==—| I Hnan- xd0 24 Gix,0) =~ j &% ldo,.  (29)
*,) 87 ne (M ) (24) * 82 Ea se3, 2044
is purely real and corresponds to tistatic part of the  This can be written in a causal form as an integral over
Green’s function. The matriX is defined by forward pointing wave vectors,
_%j_ R _ i e’ i S,,X
I =", (25) GRX,0) = — 0, —“*do,. (30
p 8772 a SEE; Ug.a
for which

The general result including the anticausal Green’s function
reads

1 A
E d eCY elws-r, (31)

R _ .
Gilxy) =% Iw(271-)2 =)o O-QZUg,a
where3? is the positive or negative of the surfake, re-
spectively. For the causal Green'’s function this is to be un-
derstood over the upper hemisphés>0). For the anti-
causal Green'’s function, the lower hemisphere is the domain
of integration. Furthermore, the group velocity is the oppo-
site of the direction of observation, leading to a sign change
of the integrand. In conclusion, thdiscontinuity of the
FIG. 5. (Color onling Twisting of polarization: shear 2. Green'’s function
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FIG. 7. (Color
transducers.

PHYSICAL REVIEW E 70, 036206(2004)

constant rate. The actual position of the single resonance is
to the left of the observed peaks as the frequency is swept
upwards. Since occasionally two or perhaps even more reso-
nances are close together, the observed signal appears as su-
perpositions of such. The resonances are fitted by using a
recognition codg23] which is based on maximum entropy
principles. The code fits for each resonance the position in
frequency, the decay width, and {omplex amplitude. It is
capable of treating individual resonances with ringing and of
superimposing them if they are overlapping. Good perfor-
mance is observed for the real and imaginary part of the
response.

The quartz sphere was manufactured with a high preci-

onling Quartz sphere with supporting  gjon The spherical shape ensures the discrete symmetry of

AG(x,y) = G.(xy) = G_(x,y)

1 e )
Ziw—— do,—%—e®sxy) (32
“’(2w>22a Jz 7204 4 (32

the crystal, which is described by the symmetry grdup
However,Dj is broken to the symmetry group; due to the
positions of the transducers in the experiment. Moreover,
despite the high precision manufacturing, the shape cannot
be perfectly spherical. Its diameter has a relative precision of
5X 107, At high frequencies this should lead to observable

is expressed as an integral over the whole slowness surfac littings. Finally, gravity leads to an oblate deformation of

Note here the cancellation of tieeal) singular part in the

discontinuity of the Green'’s function.

IV. ACCUMULATION OF DATA

the sphere. These effects further break the symmetry. Hence

the vast majority, if not all, of the symmetry degeneracies are
expected to be broken.

V. WEYL CONTRIBUTION

In the experiment§l6], several shapes were studied. This

paper concerns the spectrum of a particular quartz spherF.
We shall briefly sketch the experiments; further details will N

We now discuss the counting function. We work out the
ading approximation in Sec. V A and evaluate it numeri-

be given in Ref[16]. The quartz sphere is supported by three?altlﬁ: in Sec. VB. IntSec. \i.B’ V\ée.cot?pare t_o datg Obt?\'/ned
transducers; see Fig. 7. The transducers excite the sphere Jipthe measurements mentioned In the previous Sec. 1v.
piezoelectric coupling. The data obtained in the experiment

are an arbitrary constant times the complex ratio of the out-
going to the incomingelectric signal. As the data are com-

plex the actual phase of the response is available. The sety,
and the measurement techniques are extensions of previo

A. Approximation to the counting function

The smooth or Weyl part of the level density is the easiest
access. The fluctuations play an important role as well. In

Fitt, the oscillating part of the level density becomes of the
work [10]. The resolution of the setup, characterized by theS ’ Hatng p v d

Q value, is very high. A typical resonance measured in ex
periment is shown in Fig. 8. Due to the hi@hvalueringing
is observed because the transducer frequency changes at a

20

’ | — resonance position
18 i - experiment
¢ |- - max-ent
16 P
)
1 1
214 g 3
= 1 i
512} "
g ',
c10f 4
— I !
< 1 &
Z 8 j VR
~ ’ 1
= 6| I IY ! ‘\
fl 1 v' \ v‘.‘ 8
Al : A S——
; o
.
[seeveeseccnsensen,, ¢ v
‘ m."""'-.. .-‘,
418.885 418.886 418.887 418.888  418.889 418.89

FIG. 8. (Color onling Resonance with ringing due to finite

418.891

frequency (kHz)

sweep velocity and higl) value.

ame order as the smooth part. Here, however, the focus is
‘on the smooth part. The level density is written formally as

d(w) =2 - ). (33

This can be found from the discontinuity of the Green’s
function as

d(@?) = —Tr AG(a?) (39

27
since we here use a Green’s function with respect to the
squared angular velocity. Now the Green’s function is ap-
proximated with the corresponding free function. This step is
discussed in Refl24] and below in this section and corre-
sponds to that in the interior parts of the resonator where the
propagation is roughly free. This gives

1
2vg,a

2 Z v gyt f
d(w )_wa(ZW)gza . do, (35

The volume of the resonator is denot¥d The counting
function

036206-5
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o? TABLE |. Elastic constants for quartz at room temperature.
N(w) = N(w?) = f d(w'?)dw’? (36)
0 Units Cl1 C12 C13 Ci14 C33 C44
becomes 10" N/m? 0.868 0.0704 0.1191 -0.1804 1.0575 0.5820
3
w® 1 1
N(w) = VX?WE f do,—. (37)
T a Jsex,  Uga part from zero length orbits. The latter do not fluctuate and

From Eq.(21) and geometrical considerations of cones the'@Presents the average contribution.
volume element on a given slowness sheet is
B. Numerical calculation and prediction

1ldo,
dVazgv— (38) At room temperaturel,=22°C, the mass density is
g =2.6485 g/cm, and the diameter of the sphere measures
and therefore 87.75 mm. The elastic constants for quartz at room tempera-
3 ture are listed in Table I.
N(w) =V, >, V,, @ 3 (39 They are given in Voigt notation. Pairs of Cartesian indi-
- (2m) cesij with i,je{x,y,z} are numbered as followstx=1,

yy=2, zz=3, yz=4, zx=5, andxy=6. Thus, for example,
Cxxyz IS denoted C14.

We now calculate the leading Weyl tei@0). The volume
N(f) =V, 2V, f3. (40)  in slowness space is conveniently expressed as an integral
o over the unit sphere,

in terms of the volumes of the slowness she¥ts, Some-
what simpler, using frequendy

Thus we have a re-derivation of the well-known result: 1 3
namely, the number of states equals to leading order the VSZEVfEé s,dn. (43
available phase space volume. “ @ one

Although we deal with the anisotropic case, it is instruc-The three lengths of the slowness vectors are found from
tive to see that the formulas reduce to the result for the isoEqgs.(10) and(11). In particular, the squares of the velocities

tropic case, are found from Eqs(25) and (26). Therefore Eq(43) re-
A 1 2 duces to
N(f) = ?VX<—3 + —3>f3, (41) 1
@ & Vo= = f tr(I(n)"*dn, (44)
3Jhee

wherec, andcy are the longitudinal and the transverse sound

velocities, respectively. o which is easily calculated from the eigenvaluedh). Fi-
In solid state physics the procedure is different. The resoha”y the symmetry can be exploited: In the case of quartz it

nators are unit cells in crystal lattices. This implies a per|0d~IS enough to integrate over a fundamental regios @

icity assumption of the crystal in contrast to our case of 8 5./3 and 0< #=< =/2 and multiply by 6. Using the elastic

finite system. Lattice vibrations are connected to the concentstants in Table I. we find the volume in slowness space by
of heat and the counting function for vibrations leads to thenumerical integratic;n

famous Debye law for the heat capacity. This is derived in
Ref. [1]. V= 1.4909% 10 %sec/m?®. (45)

We will now discuss heuristically why the above deriva- __ . .
tion is nothing but the leading approximation and correpondérhIS volume may be used for various shapes of resonators

to the smooth part of the counting function. Since the tracd'PON multiplication W.‘t.h the particylar volumes in physisal
of the Green’s function is taken, it is mainly the local propa_space. Hence, combining everything, the number of states for

gation between nearby points which is probed. However®U" SPhere should grow as

also the possibility of propagation via reflections from the N(f) = A+ O(f2) (46)

boundary remains. Contributions here come from periodic

orbits p but are typically of lesser magnitude than the directwith the constant

zero length .con.tribution. Ultimately such terms lead to osc_:il— A=5.274% 10 sed 47

latory contributions to the spectral density. Thus expanding

around periodic orbits using the method of stationary phases the result of our computation.

leads to terms of the form of amplitudég times phases, The elastic constants change with temperature. In Appen-
. dix B, they are given in terms of an expansion. As the ex-

ApexplioTp+ ), (42) periment was performed at=30°C, we also calculate the

where thedimensionlesgclassical actiorkL,=wT, in terms volumes in slowness space with these corrected constants.

of the length/period of the orbit controls the phase of theHowever, it turns out that the relative difference to the cal-

fluctuations. Averaged over a sufficently large frequency inculation for room temperature is of the order of4hat is,

terval the fluctuations dissappear and what remains is thwithin the numerical errors. Similarly, the temperature de-
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10 x 5 10°x 12 |
< .
10l
. 8
( |
& dosc 6 [' | A
4 ; \lf’ \\\ /\i e
| A 7N \
8 21| \/ NSV AN A
N - /‘\/.¥,_
0
2 10 20 30 40 50
Time (us)
1 FIG. 11. (Color onling Period spectrum.
0 corresponding to the largest peak to approximatejys2c.

Also other peaks a4,9,13,17,20, . usec are observed. As
the frequency interval sampled is approximately 500 KHz
the resolution is roughly Zsec. It is tempting to interpret
the largest peak as due to the shortest bouncing-ball-type
mode, that is, a wave packet bouncing back and forth along
some diameter of the sphere. If we take the velocities to lie
‘Setween 5 and 10 km/sec the shortest period is around
17.8 usec. Therefore the peak corresponding to the sawtooth
oscillations is not likely to be due to such a mode and re-
C. Comparing with experiment mains unexplained so far. Likewise the remaining short times
gass than the estimate 17u.&ec are not explained.

4 5 6 7 8 9
f 10°Hz)

FIG. 9. (Color online Spectral staircase: experiment and fit.

pendence of the mass density, see Appendix B, has no infl
ence either.

The spectrum used here was measured from 410 t
960 KHz. The resonances were identified by means of the
recognition routine[23]; mentioned in Sec. IV. Roughly VI. SUMMARY AND CONCLUSION

52 000 resonances were found. Here the bulk term in EQ. e have discussed the experimental spectrum of a quartz
(46) contributes with at least 43 000 resonances. The Sta'réphere from the point of view of the spectral counting func-
case for the experiment is fitted with a cubic polynomial; se§jon The classical phase space volume gives indeed the lead-
Fig. 9. For the leading coefficient we find ing behavior of this object. On calculating this numerically
Aq; =5.030% 10 ¥seé. (48) we find i_t in good agreement with the experimentally fitted
term. This paves the way for further studies of elastic spec-
This is in good agreement with the theoretical regdll).  tra, such as boundary corrections to the counting function
The relative error is 4.6%. [25,26 and periodic orbit theory for the fluctuations in the
The difference between the fitted and the experimentalevel density[13-15.
counting function is plotted in Fig. 10. The sizable deviation  Due to the boundary further resonances should be present.
between fit and experiment is striking. It resembles a sawtess is not expected as the boundary conditions allow for
tooth with very rapid fluctuations on top. We Fourier trans-surface waves in analogy with Neumann conditions for the
form this oscillating structure and obtain the period specHelmholtz case. It is currently an open problem to incorpo-
trum; see Fig. 11. From this we estimate the timerate this surface contribution in the anisotropic case. Never-
theless, such surface modes couple to the bulk and are not
102x 4 exponentially damped in this elastic case. Therefore experi-
3 ments should access these states and thereby the surface cor-
rection to the leading volume term as well.
The fluctuating part would involve recent semiclassical
1 methods. Here individual closed rays, periodic orbits, control

N 0 the oscillations in the level density. In particular this has

-1 M been shown not just for quantum mechanical spectra but also
more recent in two dimensional elastodynamic resonators.
-2 The step to three dimensions plus anisotropy has yet to be

-3 made.

4 5 6 7 8 9
f (10°Hz) ACKNOWLEDGMENTS

FIG. 10. (Color onling Fluctuations of the counting N.S. and T.G. acknowledge discussions with S. Creagh
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APPENDIX A: RADON TRANSFORM AND THE GREEN'’s o(x)=- 72 dQé”(n-x). (A8)
FUNCTION nes’

Following Ref.[21] we first solve the Radon transformed "€ latter is proved using
time problem. Next the solution is transformed back, and
finally Fourier transforming gives the frequency dependent 27X :J dQ|n - x|
Green’s function. nes

and the identities|x|=28(x), A(1/|x|)=-4w8(x) and Alx|

Radon transform =2/|x|. Hence we find the Green’s function in configuration
The equations=n-x describes a plane with the normal space,
vectorn in the space of the position vecteor The plane cuts H(t)
the direction defined by in the heights. The Radon trans- G(x,t) =~ 1672 dQE ﬁt[é(c t+n-x)
form f(s,n) of a functionf(x) is the average nes
+8(Ct—n-x)]
Rf(s,n :fs,n: f(x)8(s—n - x)dx Al H(t
(s =t f()( : (A :—ﬁf d03 5 até(ct nex), (A9)
over the plane for a given height The Radon transform of . . nes ‘
the spatial derivatives of the functidiix) fulfills by inverting Eq.(A6).

( Jf ) Frequency domain
R ax (&) =n(RN ). (A2) The frequency dependent Green'’s functd(x, w) is ob-

, . . tai Fouri forming E¢ ith time:
We now apply this to the time dependent elastic probi&m ained by Fourier transforming E(R9) with respect to time

We denote the Green’s functidb(x,t) and its Radon trans- G(x.0) = dQE f dte“H (1),
form G(s,n). We find @ 8712 ).
[T(n)# - 1] - G = - 18(9) 3(t), (A3) X 6(cat -n-x). (A10)

where the matrixI' is defined in Eqs(25) and (26). We  The inner integral is found by partial integration: the time
observe thaé(s n) also depends on tine The initial con- derivative will act either on the exponential or the step func-

T ' P - tion leading to the regular respective singular contribution
dition is taken as causal such thafs,n)=0 for t<<0. Nec-

essary and sufficient conditions for solving this problem are GR(X,w) = 2 aka"*gQ)
found by projecting onto the subspaces defined by the indi- 872 nx>0 =
vidual polarizations:

0[

~ — I_ gk anx|
(G2~ He Glsn=-e"aq9aD,  (Ad) "8 neszz ar (ALY
wherec, is the phase velocity associated with polarization g4
ande” is the corresponding projector. Invoking d’Alembert’s
solution

a a

GS(X,w) = é nESZI“l(n)é(n -x)dQ).

The anticausal Green’s function is found similarly by revers-
ing the time in, say, EqQA6). In particular, the same singular
part is otained whereas the regular part is the complex con-
jugate of the causal regular part.

e*- é(s,n) = e‘“?[H(ﬁ c,t) —H(s—c,t)] (Ab)

o

with H the Heaviside unit step function, we find

G(sn)=> ea¥[H(s+ ct) -H(s-c,)], (A6)

Ca APPENDIX B: TEMPERATURE DEPENDENCE
which is the full solution. The resonator is kept at fixed temperature
T=30°C (B1)
Inverse Radon transform with a precision on the order of a mK. This is slightly higher
The inverse Radon transform is given by than the room temperatufg=22°C, at which the quartz
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TABLE Il. Coefficients of temperature expansion for elastic ~ TABLE Ill. Coefficients for the temperature expansion of the

constants of quartz. mass density of quartz.

Order  Units Cl1 cCi12 cC13 Cl4 C33 C44 Order Units p
0 10" N/m? 0.868 0.0704 0.1191 -0.1804 1.0575 0.5820 0 10%kg/m® 2.6485
1 10%/K -485 -3000 -550 101 -160 -177 1 10°%/K -34.80
2 10°%K? -107 -3050 -1150 -48 -275 -216 2 10°9/K? -30.04
3 10'%K® -70 -1260 -750 -590 -250 -216 3 101%/K3 49.08

sphere was manufactured. This causes a change in the elastic

. . ; Finally, there is also a shape deformation, expressed in
constants described below in terms of a power series expag;, o m}’ the tensor of thermapl expansion a(;corgin ’tod
sion around room temperature, P 9

=a; Ui

Cijii (T) = Cijia 0+ Cijia (T = T,) + Cijk|'2(T—T,)2 'I]'h]e effect of temperature change is therefore mainly to
3. ... change the shape and volume of theart of the available

* i AT =T+ (B2) phase space volume, namely the slopwness surface. Thus the
We took the coefficients of this expansion from REL7]; first table is most important for our purposes. We have cal-

they are listed in Table . culated the new volume in slowness space at the correspond-
Furthermore, a change in mass density takes place. limg experimental temperature to cubic order in the tempera-
Table I, we list the coefficients of an expansion aroundture change. The other, relative changes turn out to be

room temperature. negligible, namely of the order 19
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